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ABSTRACT: Graphene plasmons provide a suitable alternative
to noble-metal plasmons because they exhibit much tighter
confinement and relatively long propagation distances, with the
advantage of being highly tunable via electrostatic gating. Here,
we propose to use graphene plasmons as a platform for strongly
enhanced light—matter interactions. Specifically, we predict
unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and
extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks. Our theoretical results provide the
basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum

electrodynamics, and supporting the possibility of single-molecule, single-plasmon devices.
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urfaces plasmons (SPs), the electromagnetic waves coupled

to charge excitations at the surface of a metal, are the pillar
stones of applications as varied as ultrasensitive optical
biosensing,lf3 photonic metamaterials,* light harvesting,s’6 op-
tical nanoantennas,” and quantum information processing.® '
However, even noble metals, which are widely regarded as the
best available plasmonic materials,'* are hardly tunable and
exhibit large Ohmic losses that limit their applicability to optical
processing devices.

In this context, doped graphene emerges as an alternative,
unique two-dimensional plasmonic material that displays a wide
range of extraordinary properties.'® This atomically thick sheet of
carbon is generating tremendous interest due to its superior
electronic and mechanical properties,'* >° which originate in
part from its charge carriers of zero effective mass (the so-called
Dirac fermions'®) that can travel for micrometers without
scattering, even at room temperature.21 Furthermore, rapid
progress in growth and transfer techniques has sparked expecta-
tions for large-scale production of graphene-based devices and a
wide range of potential applications such as high-frequency
nanoelectronics, nanomechanics, transparent electrodes, and
composite materials."”

Recently, graphene has also been recognized as a versatile o3ptical
material for novel photonic®* and optoelectronic applications,™ such
as solar cells, photodetectors,24 light emitting devices, ultrafast lasers,
optical sensing,® and metamaterials.”® The outstanding potential
of this atomic monolayer is emphasized by its remarkably high
absorption27’28 7oL A 2.3%, where O = ¢*/hc ~ 1/137 is the fine-
structure constant. Moreover, the linear dispersion of the Dirac

v ACS Publications ©2011 american chemical Society

fermions enables broad band applications, in which electric gating
can be used to induce dramatic changes in the optical properties.”

All of these photonic and optoelectronic applications rely on
the interaction of propagating far-field photons with graphene.
Additionally, SPs bound to the surface of doped graphene
exhibit a number of favorable properties that make graphene
an attractive alternative to traditional metal plasmonics. In
particular, graphene plasmons are confined to volumes of the
order of ~10° (i.e., ~1/0)) times smaller than the diffraction
limit, thus facilitating strong light—matter interactions.
Furthermore, dramatic tuning of the plasmon spectrum is
possible through electrical or chemical modification of the
charge carrier density,zs’30 and a Fermi energy as high as Ex =
1—2 €V has been recently realized.>>*" Last, the electronic
structure of graphene and the ability to fabricate large, highly
crystalline samples should give rise to SP lifetimes reaching
hundreds of optical cycles, thereby circumventing one of the
major bottlenecks facing noble-metal plasmonics. These are
powerful reasons to investigate these plasmons, despite the fact
that no experimental proof of their existence has been yet
reported.

Here, we show that these properties can be used to tailor
extremely strong light —matter interactions at the quantum level.
In particular, we theoretically consider the interaction between a
single quantum emitter and single SPs in graphene and show that
the extreme mode confinement yields ultrafast and efficient decay
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Figure 1. Coupling of a dipole emitter to doped homogeneous-graphene plasmons. (a) Near electric field produced by a perpendicular dipole situated
10 nm away from doped graphene. The photon and Fermi energies (Aw and Eg) are both 0.5 eV. The real (imaginary) part of the perpendicular electric
field is shown as a red (blue) 3D contour. (b) Optical dispersion diagram showing the surface plasmon (SP) mode for Eg = 0.5 eV, as well as intra- and
interband transitions in graphene. (c) Real (solid curves) and imaginary (dashed curves) parts of the conductivity of doped graphene. (d) Decay rate of
an excited emitter in front of doped graphene as a function of photon emission energy for different values of Eg. The rate I is normalized to the free-space
value I'y. The emission dipole is perpendicular to the graphene and placed 10 nm away from it. Solid curves show the total decay rate, whereas dashed
curves stand for the contribution of SP excitation. (e) Plasmon dispersion relation in doped graphene. The contour plot shows the Fresnel reflection
coefficient |r,| for various values of Eg. The dashed lines correspond to the Drude model (eq 2). The SP wave vector kg, exhibits a quadratic dependence
on plasmon energy. The inset shows the 1/e-amplitude-decay propagation distance 1/Im{kg,} in units of the SP wavelength Ay, = 277/Re{k,}. The

graphene is considered to lie on an & = 2 substrate in all cases.

of the emitter into single SPs of a proximal, doped graphene sheet
(see Figure 1a). More precisely, we analyze confinement in 2D
(homogeneous graphene), 1D (nanoribbon), and 0D (nanodisk)
geometries. We find an increased degree of field enhancement and
interaction strengths with reduced dimensionality, ultimately
yielding in OD structures decay rates exceeding the natural decay
rate by 6 orders of magnitude. Consequently, graphene opens up a
novel route to quantum plasmonics and quantum devices that have

so far been difficult to achieve with conventional metal plasmonics.
Beyond the controlled enhancement and channeling of emission,
graphene should also assist the exploration of fundamentally new
regimes of quantum plasmonic interactions at the nanoscale.
Specifically, based on analytical and numerical calculations, we
predict observable vacuum Rabi splittings in our proposed nanos-
tructures, enabling a single SP to be emitted and then reabsorbed.
Finally, we show that these structures have resonant extinction
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cross sections greatly exceeding their geometrical cross sections,
despite the small volume occupied by this thin material, thus
rendering the effects observable in practice and paving the way to
advanced optoelectronic applications in which photon absorption
is dramatically enhanced.

Optical Response of Graphene. The photonic properties of
this material can be fully traced back to its in-plane conductivity
o(ky,w), which is in general a function of parallel wave vector
ki and frequency w. This quantity is mainly controlled by
electron—hole pair (e-h) excitations that can be divided into
intraband and interband contributions (see Figure 1b). Within
the random-phase approximation®>~>* (RPA), the conductivity
of graphene in the local limit (ki — 0) reduces to

O(w)_ezﬁ;
Sk e+t
& i hw — 2E
— |0(hw — 2E —1 1
+or| O F)+noghw+2EF (1)

(we take Eg > 0, see Figure 1c). The first term of eq 1 describes a
Drude model response for intraband processes, conveniently
corrected to include a finite relaxation time 7, for which we use a
conservative value (7 &~ 10~ " s at Ep = 0.1 eV) extracted from
the measured, impurity-limited dc mobility'*'® (see Methods).
The remaining terms arise from interband transitions, which
produce significant losses at energies near and above 2Eg (ie,
Re{0} = ¢*/4H, resulting in the well-established 2.3% absorption).
Equation 1 is valid at zero temperature, but we actually employ a
finite-temperature extension® at T = 300 K (see Supporting
Information), in which the step function is smeared out by thermal
effects (Figure 1c). The local limit (eq 1) produces decay rates in
reasonable agreement with the nonlocal RPA (see Supporting
Information), except in the region near the interband transition
onset or for distances below v/, where vz & 10° m/s is the Fermi
velocity.

Plasmons in Homogeneous Graphene: Extraordinary
Confinement. For sufficiently high doping (Er > w) graphene
can sustain p-polarized SPs propagating along the sheet with
wave vector kg, & i(e + 1)w/470 and electric field profile
E ~ exp[k,(ix — |z|)]. These electrostatic expressions, valid for
Aw > OEg (see Supporting Information), reduce upon insertion
of the Drude formula (first term of eq 1) to

ky ~ (R*/4¢%Eg) (e + Do(o + i/T) (2)

clearly showing a quadratic dependence of kg, on @, which is
characteristic of 2D electron gases36 (see Figure le).

The remarkable degree of confinement provided by the
graphene is clear from the ratio of SP to free-space-light
wavelengths Ay,/A0 ~ [40/(e + 1)](Ep/hw) derived from
eq 2. In addition, the out-of-plane wave vector ~iky, indicates
an equally tight confinement to dimensions ~A,/27 in the
transverse direction z.

Interestingly, the in-plane propagation distance (1/¢ decay in
amplitude), given by 1/Im{k,}, reaches values well above 100 SP
wavelengths (see inset of Figure le) and drops rapidly at high
energies when the plasmon has sufficient energy to generate e-h
pairs and the dispersion relation enters the interband region (see
Figure 1b). Figure le shows clearly that for increasing E the
plasmons become narrower because the damping rate 1/7 de-
creases relative to the photon frequency w (Figure le).

Strong SP-Emitter Coupling in Graphene. Our first realiza-
tion is that when an emitter such as an excited molecule or a
quantum dot is placed close to doped homogeneous graphene,
the emission rate is enhanced by 1—35 orders of magnitude and
the emitted energy is mainly converted into a plasmon in the
carbon sheet, as illustrated in the near-electric-field-amplitude
plot of Figure 1a.

The decay rate I' is proportional to the strength of the
coupling between the transition dipole matrix element d and
the electromagnetic modes acting on it, including the plasmon.
This can be related to the electric field induced by the dipole on
itself E™ (i.e., the field reflected by the graphene) as®’

2 .
=", + Elm{d*-E’"d} (3)

where Ty = 4ky’|d|*/3h is the free-space decay rate. For
homogeneous graphene, the induced field is related to the
Fresnel coefficients. This yields an exact relation for I" as an
integral over parallel wave vector contributions®” (see Support-
ing Information), which we use in the calculations presented in
Figures 1 and 2. However, it is instructive to explore the
electrostatic limit, which is accurate for small distances compared
to the emission wavelength

2 2 ~1 e
F~T, + = 2 md— ke
o+ Fdi” + 2/dy] )/0 kel m{e T1r 4m‘lq‘o/a)}e

(4)

where z is the emitter—graphene separation and Il (L) denotes
components parallel (perpendicular) to the graphene. The
exponential in the above integral effectively suppresses the
contribution of wave vectors kj > 1/z.

The spectral dependence of the decay rate is represented in
Figure 1d (solid curves) for various values of Ex when the emitter
is placed 10 nm away from graphene supported on silica (¢ = 2).
The rate is peaked at a photon energy below Eg, before dropping
dramatically and finally converging to a common Eg-indepen-
dent value at energies above 2Eg. This behavior can be under-
stood as follows. When the SP mode is well-defined, the integral
in eq 4 separates into two distinct contributions, a sharp pole
associated with emission into the SPs and a broad background
out to wave vectors kj ~ 1/z associated with emission into lossy
channels. The pole contribution yields the SP emission rate

(2”)4 2 2
m(@d + 2[d.[")

—47z/ A

3
Ay

(S

Ty, ~ (8)

This SP contribution (dashed curves in Figure 1d) dominates the
decay below Eg, and is responsible for the emission maximum in
that region. For distances z << A, the decay rate is enhanced by a
factor [37f/2(e + 1)](Ao/Asp)” relative to the free-space rate,
where 4y (>4,) is the light wavelength and f = 1 (f = 2) for
parallel (perpendicular) polarization. This explains the high
values obtained for I'/I"y in Figure 1d, which can be attributed
to the smaller mode volume ((}uo/isp)2 factor) and the reduced
group velocity (additional Ao/A, factor).

The noted spectral dip in the decay corresponds to the onset
of interband transitions at Aw = 2Eg and decay into lossy
channels as the dominant emission mechanism (see Figure 1b,
c). At energies above this dip, the response is dominated by
interband transitions, whereas intraband and SP excitations
become unimportant, and the rate follows a common profile
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similar to undoped graphene (Eg = 0). In fact, undoped graphene
exhibits a novel phenomenon of strong quenching induced by
the high conductivity of the carbon sheet.**~*'

It is important to note that the radiative emission rate near
graphene is comparable to I'y and therefore negligible compared
to SP launching. The carbon sheet is thus eager to absorb most of
the optical energy released in its vicinity. Consequently, the
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Figure 2. Distance dependence of emitter-plasmon coupling. (a)
Variation of the decay rate with distance to the graphene for an emitter
polarized perpendicular to the carbon sheet. The rate is normalized to
the free-space value. Solid (dashed) curves show the total (SP-mediated)
decay rate. The inset shows the same data on a log—log scale. (b, c) Near
electric-field intensity for two different graphene—emitter separations
and a Fermi energy Er = 1 eV. Poynting vector lines are superimposed to
the contour plots, with their strength shown in gray scale. The photon
energy is 0.5 eV, and the substrate has & = 2 in all cases.

emitter serves as an extremely efficient excitation source of single
SPs in graphene.

A large degree of control over the emission rate can be gained
by situating the emitter at different distances with respect to the
graphene layer, as Figure 2 illustrates. The near-field plots of
Figure 2b,c describe full coupling to SPs at small distance and
partial coupling at larger separations. The decay and plasmon
launching rates both exhibit an exponential falloff with distance
predicted by eq S within the spectral range for which the SPs are
well-defined. At larger energies above the plasmon cutoff, one
recovers the same rate as in undoped graphene, characterized by
al/z® dependence at large separations (see inset).

Engineering Plasmonic Nanostructures. While we have
thus far studied extended graphene sheets, their patterning into
nanometer-sized cavities yields additional benefits such as ex-
treme field confinement in 3D, engineering of resonances, and
enhanced coupling efficiency with the far-field.

Nanoribbons. A first example of confinement along one spatial
dimension is provided by nanoribbons. The results of a thorough
theoretical analysis are shown in Figure 3. These calculations
show that nanoribbons offer an efficient means of exciting surface
SPs in graphene, which can subsequently drive a nearby emitter.
Figure 3a depicts the extinction cross section of self-standing
graphene ribbons for light incident normal to the graphene plane
with its polarization across the ribbon (supported ribbons lead to
similar results, as shown in the Supporting Information). Plas-
mon confinement is clear from the approximate scaling of the
photon energy with the inverse of the square root of the ribbon
width. The cross section is quite high, demonstrating very
efficient excitation of SPs. Interestingly, the cross section exceeds
the graphene area in some cases (black regions). Simultaneously,
due to the large wave vector mismatch between SPs and far-field, the
scattering of plasmons back into photons is very weak, quantified by
an elastic-scattering contribution to the cross section that turns out
to be more than 2 orders of magnitude smaller than the total cross
section. The latter is therefore dominated by the excitation of SPs
that are ultimately dissipated in the carbon structure.
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Figure 3. Resonant coupling to graphene ribbons. (a) Extinction cross section of doped self-standing graphene ribbons as a function of ribbon width
and photon energy for a Fermi energy Eg = 0.2 eV. The light is incident as shown in the inset. The cross section is normalized to the carbon sheet area.

(b, ¢) Decay rate normalized to free space under the same conditions as in (a) for line emitters situated 10 nm above the center of the ribbon and
polarized parallel (b) or perpendicular (c) to it. (d) Near electric-field intensity and field lines for the modes corresponding to labels 1—3 in (a, c).
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The SP modes exhibit intense field focusing near the edges.
The number of induced-charge nodes coincides with the order of
the mode (1—3), so that odd modes display a net dipole moment
(e.g,, modes 1 and 3 in Figure 3d). In contrast, even modes (e.g,,
mode 2) couple rather inefficiently to external light because they
have higher multipolar character.

‘When a line emitter is placed right above the center of the ribbon,
odd modes can be excited with polarization parallel and across the
ribbon (Figure 3b), whereas even modes couple to perpendicular
polarization (Figure 3c). The decay rate is comparable in magnitude
to that in front of homogeneous graphene (cf. Figures 1 and 3).
However, in contrast to homogeneous graphene, ribbons provide
a very efficient way to drive the emitter by external illumination
because confined plasmons can be excited by an incident plane
wave. Effectively the cross section at the position of the emitter in
Figure 3b is increased by a factor ~750. This reflects the ratio of the
electric field intensity at the position of the emitter, situated 10 nm
away from the carbon sheet, to the incident intensity.

We remark that our calculations do not include edge effects
such as the opening of band gaps due to quantum con-
finement*>** or edge defects,** which can considerably modify
the conductivity of ribbons with widths below 50 nm. However,
we are considering strongly doped graphene, for which the band
gap (typically ~20 meV for a width of 10 nm) is much smaller
than the Fermi energy. Therefore, we expect these effects to play
a minor role in the plasmonic properties for plasmon energies
above the band gap.

Nanodisks. Although ribbons offer an efficient way of exciting
SPs, the decay rate of a nearby emitter is comparable to a graphene
homogeneous sheet, and low photon energies are required. In
order to boost light—matter interactions at higher photon en-
ergies, confinement in all dimensions is desirable. Plasmon con-
finement in all directions is achieved using the circular disk cavities
illustrated in Figure 4. This leads to narrow resonances compared
to ribbons and homogeneous graphene. For simplicity we consider
self-standing disks, although like in the ribbons, supported disks
lead to similar qualitative conclusions. The decay rate (Figure 4a)
is significantly boosted at resonance frequencies that can extend up
to above Eg. This allows one to reach the near-infrared (NIR)
region with attainable levels of doping.***!

The light extinction cross section is also peaked at the SP
resonances (Figure 4b), reaching values up to 1 order of magnitude
larger than the disk area. However, similar to the other geometries,
the radiative emission rate (dashed curves in Figure 4a) is system-
atically below 1% of the total decay rate (solid curves) in all cases
under consideration. This indicates that SPs can be efficiently
excited by external illumination, but once produced they stay in the
graphene for up to a few hundred optical cycles (see Q factors
below) with negligible out-coupling to far-field radiation.

The modes emerging in the spectra of Figure 4a have either
m =0 or m = 1 azimuthal symmetry when the emitter is situated
above the center of the disk and is polarized perpendicular or
parallel to the carbon sheet, respectively. The near electric-field
of these modes, represented in panels c and d of Figure 4, clearly
shows that the m = 1 plasmon is dipolar and thus couples
efficiently to incident light, in contrast to the m = 0 plasmon.

Detailed inspection of the Er and disk-size dependence of
these SPs reveals the following properties (see Supporting
Information): the scahng of the plasmon frequency is inherited
from the w,, o (EF/lsp) scallng in homogeneous graphene,
so that it 1ncreases with Ex'/? and decreases with the inverse of
the square root of the diameter D (in particular, Ay, ~ D, 3D for
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Figure 4. Plasmons in graphene nanodisks. (a) Decay rate of an emitter
situated 10 nm above the center of a doped graphene disk for two
different disk diameters D and various values of the Fermi energy E, as
shown in the legend. Total decay rates (solid curves) are compared to
the contribution of radiation emission (dashed curves). Some of the
curves are only shown over a limited energy range for the sake of clarity.
The emitter is polarized parallel to the disk, so that it excites SPs of m = 1
azimuthal symmetry, except in the dotted curve, corresponding to
perpendicular orientation (m = 0 symmetry) for D = 100 nm and
Eg =04 eV. (b) Normal-incidence extinction cross section of the same
disks as in (a). (¢, d) Near-electric-field intensity of the lowest-energy
modes in a D = 100 nm disk doped to Eg = 0.4 eV for m = 0 (hw =
0.16 eV) and m = 1 (hw = 0.26 V) azimuthal symmetries. Electric-field
lines are superimposed on the intensity plot.

m = 0, 1); maximum Purcell factors T'/Ty ~ 10°—107 are con-
sistently obtained; the quality factors (extracted from the peak
frequency divided by the spectral fwhm) qualitatively follow the
relation Q ~ w,T and reach values above 100 for 7 ~ 107!

It should be noted that for such large predicted enhancements
of decay rate, the perturbative treatment of light—matter inter-
actions as described by eq 3 can break down, giving rise to a new
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regime of quantum behavior. Physically, the emitter cannot
exponentially decay into the SPs at a rate faster than the
plasmonic cavity line width k = @,,/Q. As described below, once
I, > K, it should be possible to observe a vacuum Rabi splitting,
indicating that an emitted SP can be reversibly and coherently
reabsorbed by the emitter.*>*°

A New Regime: Plasmonic Vacuum Rabi Splitting. The
large Q factors and field concentrations in graphene disks are
ideally suited to perform quantum optics down to the single-
photon level. Here we take a simplified model consisting of a
two-level quantum emitter (e.g., a quantum dot or a molecule)
interacting with a near-resonant single mode of a graphene disk.
Such a system is characterized by the Jaynes—Cummings
Hamiltonian®” H = Hy + H,, + H., where

1
HO = ﬁwp <a+a + E)
I’
+ hwgoto — ihg ata— ih;o oo

is the noninteracting part, which includes the plasmon mode of
energy Aiw,, and its creation and annihilation operators a” and a
(first term), as well as the unperturbed quantum emitter (second
term), whose excited state of energy Aw, is created by the
operator 0" = |1){0|, connecting its ground |0) and excited |1)
levels. We introduce in Hy non-Hermitian damping terms to
account for inelastic decay channels of both the plasmon mode
and the excited emitter (e.g., through relaxation and radiative
emission) with rates k and I, respectively. This is consistent
with a quantum jump formalism to describe this open quantum
system.*® The SP—emitter interaction is contained in

H, = ihg(a*o —ao™) (6)

and H,,, represents the coupling with an external light field (see
Supporting Information).

In this model, the SP-emitter coupling g is determined by
comparison with the above electromagnetic calculations (eq 3),
which correspond to the low-coupling limit (g << «); assuming
o= Wy, the quantum model yields49 =T+ 4g2/ . In our case,
I'y < k and thus we find g~ («kD)'2/2.

The properties of the Jaynes—Cummings Hamiltonian are
well-studied.*® When the emitter and cavity are on resonance and
the system is in the strong coupling regime (g > x,I'y), the single-
excitation dressed eigenstates consist of even and odd superposi-
tions of the excited state of the emitter and a single photon, which
can be distinctly resolved. In this regime, an initially excited emitter
will undergo damped Rabi oscillations at a rate g, where the emitted
photon can be reabsorbed before it leaves the cavity.

The ratio g/x reaches a maximum value ~4 for 100 nm self-
standing graphene disks, assuming a reasonable value of the natural
decayrate [y =5 x 10" s~ ', as we show in Figure Sa,b. Actually, g/x
is clearly above 1 for a wide range of doping and disk-size parameters,
which indicates that the strong coupling regime is robust.

A simple signature of strong coupling can be observed in
avoided crossings of the extinction cross section of the combined
disk—emitter system, 0 () = 47k, Im{0(®)}, where a(w) is
the polarizability of the combined system (see Supporting
Information). We show in Figure Sc the extinction cross section
for an emitter of excited energy hw, = 0.3 eV and natural
decayrate [y = 5 x 10" s~ ' situated 10 nm above the center of a
self-standing 100 nm graphene disk. A pronounced vacuum Rabi
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Figure 5. Strong coupling and vacuum Rabi splitting in graphene
nanodisks. (a, b) Fermi-energy and disk-radius dependence of the
strong-coupling parameter g/x for an emitter placed 10 nm above the
center of a doped graphene disk for the first-order (solid curves) and
second-order (dashed curves) modes with either m = 0 (green curves) or
m =1 (red curves) azimuthal symmetries (the two lowest-order modes are
shown for each symmetry). The natural decay rate of the emitter is [y= 5 X
10”5 " (see eq 6 and below). (c) Fermi- and photon-energy dependence of
the extinction cross section of a combined emitter—nanodisk system under
the same conditions as in (a). The emitter has a resonance at Aicyy = 0.3 €V
and is oriented parallel to the disk. The cross section is normalized to the
maximum resonant extinction of the isolated disk.

splitting is observed that can be probed within a single device by
changing the doping level.

Conclusion and Outlook. Here, we have described powerful
and versatile building blocks for advanced graphene plasmonic
circuits. These ideas take advantage of the unique combination of
extreme field confinement, device tunability and patterning, and
low losses that emerge from the remarkable structure of graphene
and current experimental capabilities for fabrication. These
advances are expected to both remove a number of obstacles
facing traditional metal plasmonics and facilitate new possibilities
for manipulating light—matter interactions at the nanoscale
down to the single-SP level. The simultaneous large bandwidths
and field enhancements, for example, should enable novel low-
power, ultrafast classical or quantum optical devices. The strong
coupling between single emitters and single SPs could be used to
construct fast quantum networks or simulate exotic strongly
interacting condensed matter systems.’® Our proposed techni-
ques could also be potentially applied to manipulate or couple
together more exotic excitations in graphene, such as
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thermog)lasmons in undoped graphene®' or s-polarized plasmon
modes.” Finally, while we have demonstrated the feasibility of
graphene plasmonics via free-space excitation and detection, the
possible applications should be even further enhanced with the
advent of novel devices such as SP sources, detectors, lasers, optical
switches and interconnects, plasmon-enhanced photodetectors,
and other graphene-based nano-optical elements.

Methods. Electromagnetic Simulations. We describe ribbons
by expanding the induced current in Fourier series, assuming that the
parallel external field is directed across the ribbon, using a supercell
with sufficiently spaced carbon sheets (see Supporting Information).
Good convergence is obtained with 400 Fourier components and
supercell spacings of four ribbon widths. This method produces
excellent agreement with an alternative approach fully relying on
numerical electromagnetic simulations consisting in modeling the
graphene as a thin film of dielectric function 1 + 4io/wt and
thickness ¢ = 0.5 nm, with the edges rounded by hemicircular profiles,
for which we find converged results using the boundary element
method (BEM), as shown in the Supporting Information.>> Nano-
disks are also simulated with the BEM. The conductivity is taken from
the k— 0 limit of the RPA*® in all cases. The decay rates are obtained
from the self-induced field of a dipole using eq 3.

Relaxation Time. This is an important parameter because the
actual value of T affects the plasmon propagation distance, which
is nearly proportional to 1/7, although the decay rates computed
here are rather insensitive to 7 (because they are k-integrated
quantities), except near the intraband onset (see Supporting
Information). We estimate 7 from the measured, impurity-
limited dc mobility'™'® 4 ~ 10000 cm®/(V s), which yields
T= ;LEF/evF2 ~ 10 "3 s for Ex = 0.1 €V, to be compared with
~10"* s in gold. We note that this is a very conservative value
compared to recent observations in high-quality suspended
graphene®’ (4 > 100000) and graphene on boron nitride’*
(u = 60000). Optical phonons are known to contribute to T
above the phonon frequency ~0.2 eV. Careful analysis'> reveals
that their effect can be incorporated through an effective 7 ~ 0.5 X
10" s, which produces a reduction in the peak decay rates
comparable to the increase in 1/7 (e.g,, by a factor of S—10 in the
spectra of Figure 4, see Supporting Information). Many-body
effects®® and fine details in the Dirac-cone band structure of
graphene® can also produce effects that should be taken into
consideration in future developments.
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© Supporting Information. Additional information on gra-
phene conductivity in the random-phase approximation (RPA),
Fresnel coeflcients and plasmon dispersion in homogeneous
graphene, decay rate and its dependence on conductivity model,
temperature, and relaxation time, Fourier expansion method for
nanoribbons, convergence of Fourier expansion and boundary
element method, supported vs self-standing nanoribbons, distance
dependence of the decay rate near a nanodisk, plasmons in graphene
nanodisks (size, doping, and relaxation dependence), field lines in
near-field plots, and polarizability of the combined SP-emitter
system in the Jaynes—Cummings model. This material is available
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I. GRAPHENE CONDUCTIVITY IN THE RANDOM-PHASE APPROXIMATION (RPA)

The nonlocal conductivity is related to the susceptibility through
O—(k\lvw) = _iWXT(k\|7w)'

We introduce a finite relaxation time 7 using the prescription given by Mermin [1, 2], which preserves the number of
charge carriers:

(1 +i/wr)x(kyj,w+1i/T)

T k 5 = . - ’
e 9) = T i)y + 7)oy 0)
where
o) = — & [ ew Lo S Bt K [ Or(sorlky +Kj)) — Or(svrk))
Xk, w) = 2 hik2 I Z + ss L kn + K ]
bk Neadt 1K ] ot op (k) — k) + K1) + 0t
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is the linear RPA response function [3, 4] and 6z (F) is the Fermi-Dirac distribution.
The RPA response admits an analytical expression at zero temperature [3] (i.e., for 8z (E) = 0(Er — E)):

2 | 8kp G(—A_) §[-Re{A_} — 1] + [G(A_) +in] O[Re{A_}+1] — G(A,)

= — +
2 9
4rh UFk:H w2 — v%kﬁ

x(kyj, w)

where
G(z) =2zV2z?—1—log <z+\/2271>

and As = (w/vp £ 2kp)/k|. Here, the square roots are chosen to yield positive real parts, while the imaginary part
of the logarithm is taken in the (—7, 7] range. Additionally, we have

2

x(kyj,0) ¢ {4kF — 0(1—x) {x\/ 1— 22— cos™* x} } ,

- QWHUF]CH T”

where x = 2kp /kj. We use these formulas to compute the nonlocal RPA in this document.
To a good approximation (see below) the conductivity can be evaluated within the local RPA (i.e., the kj — 0
limit), which leads to an analytical solution including the dependence on T [5]:

2e2T 1
olw) = — mlog [2 cosh(Er/2kpT)] (1)
e? diw [  H(e)— H(w/2)
+47:L|:H(w/2)+ﬂ'/0 d€—w2_462 y
where
He) = sinh(fie/kpT)

cosh(Ep/kgT) + cosh(he/kpT)"

The first term in Eq. (1) corresponds to intra-band transitions, in which the relaxation time has been introduced to
make it converge to the Drude model at T' = 0. We show below that nonlocal effects produce qualitatively similar
results as a finite relaxation time 7 and temperature T'. Because the actual value of 7 depends on the quality of the
synthetized graphene, it can actually be regarded as an effective parameter. Actually, the decay rate of an emitter in
the vicinity of homogeneous graphene is rather insensitive to the inclusion of nonlocal effects and the actual value of 7
and T within the wide spectral region for which the plasmons are well defined (see below). Therefore, we use Eq. (1)
for the conductivity in all calculations presented here and in the main paper (unless it is stated otherwise) because it
gives a reasonable description and it is local, so that we assume that it can be also used for patterned graphene.
When T = 0, Eq. (1) reduces to

e?Ep ) e2

eBr i €& hw —2EFp
mh? w+it~1 4k

o) = ho T 2B

O(hw — 2EF) + L log
7

|\ @)

which shows a sudden increase in losses (step function affecting the real part of o) at the onset of vertical intra-band
transitions, fuww = 2Ep. Full inclusion of finite temperature and damping leads to a smoother onset, but Eq. (2)
contains the main features of the graphene conductivity.

II. FRESNEL COEFFICIENTS AND PLASMON DISPERSION IN HOMOGENEOUS GRAPHENE

The response of homogeneous graphene is expressed in terms of its Fresnel reflection coefficients [6], which can
be obtained by applying the customary boundary conditions (AE; = AH, = 0, A(cEL) = 470V - E| /iw, and
n x AE, = (4o /c)E) for the fields of incoming p- and s-polarized plane waves as

i ek, — k| +4dnok, K| Jw 3)
Pk + k) +4nok K| Jw’
ki — k| = 4noky/c

ki + K| +4roke/c’
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FIG. 1: Spectral dependence of the in-plane plasmon propagation distance (in units of the plasmon wavelength) obtained from
the RPA for various relaxation times in homogeneous graphene supported on an € = 2 material and doped to Er = 1eV.

where € is the permittivity of the substrate on which the graphene is deposited, kg = w/c is the free-space light wave
vector, k| = ,/kZ — kﬁ and k| = ,/ek? — kﬁ are the perpendicular wave vectors outside and inside the substrate,

respectively, and k is the parallel wave vector.
The dispersion relation of p-polarized surface plasmons (SPs) is determined by the pole of r,, which yields the
equation

e/\/ekg — k2, + 1/\/[6(2) — k2, = —4no/w
for the plasmon wave vector kg,. Here, we can use the electrostatic limit of this expression,
ksp = i(e + 1)w/4mo,

under the common condition kg < |ksp| (actually, this condition is fulfilled for w > aEp, where o &~ 1/137 is the
fine-structure constant).

We plot the plasmon dispersion relation in Fig. 1 of the main paper, and we supplement it here by showing the
1/e-amplitude-decay propagation length computed from 1/Im{ks,} as a function of plasmon energy for various values
of 7. For the relaxation times considered in this work, the susceptibility has an almost linear dependence on the
damping rate 1/7 that translates into a linear variation of the plasmon propagation length with this parameter, as
shown in Fig. 1 for Ep = 1€V.

III. DECAY RATE AND ITS DEPENDENCE ON CONDUCTIVITY MODEL, TEMPERATURE, AND
RELAXATION TIME

The decay rate I' can be related to the electric field induced by a dipole d on itself E™? as [6]
2 * ind
I'=Ty+ ﬁlm{d -E"MC} (4)

where I'g = 4k3|d|? /3R is the free-space decay rate. When the emitter is above a substrate covered with a homogeneous
graphene layer, the induced or reflected field can be in turn related to the Fresnel coefficients of graphene to yield [6]

I 21,2 2 27.2 e?ikiz
D=To+ [ kydyRe [|d“\ (k2ry — k2rp) +2|d. | k”rp} —— (5)
0 1

where z is the emitter-graphene separation, d and d, are the components of the transition dipole parallel and
perpendicular to the carbon plane, and the integral is extended over parallel wave vectors k). In this work, we use
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FIG. 2: Decay rate calculated from the RPA at T'= 0 for 7 = 50fs (solid curves), 7 = 500 fs (crosses), and 7 = 5,000 fs (dots).
The emitter is placed 10 nm away from a homogeneous graphene sheet deposited on the surface of an € = 2 material. The rate
T" is normalized to the free-space rate I'g.
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FIG. 4: Distance dependence of the decay rate under the conditions of Fig. 3 for a photon energy of 0.5eV. Solid curves: local
RPA. Dashed curves: RPA.
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FIG. 5: Decay rate calculated from the local RPA at T = 0 (solid curves), T'= 100 (crosses), and 7" = 300 (dots) for 7 = 500 fs
under the same conditions as in Fig. 2.

Eq. (5) to compute the decay rate in homogeneous graphene, and Eq. (4) for nanoribbons and nanodisks, with Eind
calculated as explained in Sec. IV and V.

The decay rate I' is a kj-integrated quantity, and therefore, we expect a mild dependence on the relaxation time
7, except in the neighborhood of the onset of vertical inter-band transitions, where I' takes small values that are
incremented by the smearing of the electron-hole pair (e-h) continuum due to relaxation. This is the conclusion that
can be extracted from Fig. 2, in which we plot the spectral dependence of I" for various values of the Fermi energy and



we consider a wide range of relaxation parameters. The rate is nearly independent of 7 over the region of existence
of surface plasmons and also above the noted onset, where it convergences to the undoped graphene level.

A similar conclusion can be drawn when comparing the RPA with the local RPA (Fig. 3). They produce nearly
the same results, except in the spectral region extending from the plasmon cutoff to the vertical inter-band transition
threshold. Clearly, the agreement in the plasmon region improves for higher Ep, presumably as a result of the
momentum cutoff for finite separation between the emitter and the graphene, which effectively reduces the effect of
non-vertical e-h transitions. The two models also differ in the low-energy region. The agreement in the plasmonic
region is also observed in the distance dependence of I" (Fig. 4), although severe discrepancies are observed for Ep
slightly below the photon energy.

We explore the variation with temperature in Fig. 5. The effect of a finite temperature is similar to that of finite
relaxation, essentially consisting in smearing the dip in the decay rate below the 2Fr onset.

IV. FOURIER EXPANSION METHOD FOR NANORIBBONS

We consider a nanoribbon contained in the z = 0 plane and having translational invariance along y. Furthermore,
we assume the external field to be independent of y. This is the case for illumination with a plane wave normal to the
graphene and polarized along = (actually, this is the geometry for which we calculate the cross section in this work),
and also for emission from a line dipole polarized along either z or z and consisting of a continuous distribution of
identical point dipoles distributed along a line parallel to y (we obtain decay rates for this configuration).

Under these conditions, the component of the electric field parallel to the graphene is along x, and thus, the
induced current n(z) is also along . The field produced by each surface element dxdy is the same as that of a dipole
(in/w) dxdy. Summing all of these dipole contributions, and including the effect of a substrate through its Fresnel
coefficients [6], we find the self-consistent relation

wa)fo = B2 @) - - [dgbu(i=n,) [drents ), )

where the z integral is extended over the graphene width, k1 = \/k3 — ¢2, ko is the free-space light wave vector,
and 7, is the Fresnel coefficient of the substrate for p polarization. More precisely, r, = (ek; — k| )/(eki + k'),
where k', = \/ek? — ¢*. Here, ES* is the external electric field along x, which already includes the reflection by the
homogeneous dielectric substrate of permittivity e.

We solve Eq. (6) by considering a supercell with the graphene occupying the z = 0 and 0 < & < b region, and by
periodically repeating this unit cell with period a along z. Then, we expand the conductivity, the external field, and
the surface current in Fourier series. For example, the conductivity becomes

o(z) = Z 0, eI
n

(it is zero outside the graphene and given by Eq. (1) in the graphene), where g, = 27n/a, and the coefficients o,, are
easily obtained from the expansion of the step function representing the ribbon. This allows us to project Eq. (6) into
Fourier components as

1

b
. 2 ’ ’
Ny = a /0 dx O'(Z) Eg"t(:c) e It — Uﬂ— ng/ kri (1 - T;L )an—n’nn/a (7)

where k‘f and rl'}/ are the same as k, and r, for ¢ = g,. Finally, we solve Eq. (7) by using standard linear algebra
with a finite number of waves M.
The scattered near-field is given in terms of the 7, coefficients as
k'l z 1— 7)) (k7. 0. — >0
Escat _ 7277T eign:c % ‘ ( rp) ( L gn)7 ‘ ’
== 2.

n e‘“ﬁ’liz(l + 1) ( "1,0,90)/€, 2z <0,
where the substrate is taken to occupy the z < 0 region.

We obtain convergence for isolated ribbons by taking a equal to 2-4 times b. Then, we derive the single-ribbon

far-field from the induced current of the ribbon in the first unit cell:
oik'R

VKR

scat __

fép,
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FIG. 6: Convergence of the Fourier expansion (FE) and the boundary element method (BEM) for a graphene nanoribbon of
width 100nm and Er = 0.2eV. We represent the extinction cross section calculated with various values of the convergence
parameters for normally-incident light. The number of Fourier components M and boundary parametrization points N are
given in the text labels.

where £, is the unit vector for scattered p-polarized light,

f _ V 2’/Tko e,iﬂ./4
C

(I£rp,) cosb Z%In (8)

is the field amplitude, 8 is the angle relative to the outwards surface normal, ¥’ = ko (K’ = kg+/€) above (inside) the
substrate, the upper (lower) sign in (8) applies outside (inside) the substrate, and

eilgn—a)b _ 1
n—
9n — ¢
Here, the reflection coeflicient r, and the parallel wave vector ¢ = ko sin# are determined by the outgoing angle 6.
Applying the optical theorem to the transmitted and reflected light upon plane wave illumination and using the

above expressions for the far field, we find the extinction cross section

87 kLk/
ext _ 280 L I _ nIn .
7 w ki + K, m{ Zn:"

Finally, the decay rate per unit length along y for a line dipole of per-unit-length strength d (L y) situated above
the substrate is calculated from

nkid® 2

r= ZIm{E™ . d
no T b

where the induced field is evaluated at the position of the dipole.

V. CONVERGENCE OF FOURIER EXPANSION AND BOUNDARY ELEMENT METHOD

The Fourier expansion method converges when the number of Fourier coefficients is increased, as we show in Fig.
6 (symbols). This method produces results in excellent agreement with an alternative approach fully relying on
numerical simulations, consisting in modeling the graphene as a thin film of dielectric function 1 4 4mio/wt and
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FIG. 7: (a) Extinction cross section of doped graphene ribbons deposited on an € = 2 material as a function of ribbon width
and photon energy for a Fermi energy Er = 0.2eV. The light is incident as shown in the inset. The cross section is normalized
to the carbon sheet area. (b,c) Decay rate normalized to free space under the same conditions as in (a) for a line emitter
situated 10 nm above the center of the ribbon and polarized either parallel (b) or perpendicular (c) to it.

thickness ¢, with the edges rounded by hemi-circular profiles, for which we find converged electromagnetic results
using the boundary element method (BEM) [7], as shown in Fig. 6 (solid curves).

The agreement between the semi-analytical Fourier expansion and the BEM confirms the validity of the latter to
describe graphene as a thin effective layer of dielectric. Actually, we use this method to simulate graphene disks,
because an analytical expansion for them becomes too involved and does not add much insight into the problem.

VI. SUPPORTED VS SELF-STANDING NANORIBBONS

We show in Fig. 7 calculations similar to those of Fig. 3 of the main paper, but for graphene ribbons supported on
the surface of an € = 2 material rather than self-standing. The results are qualitatively the same for supported and
for self-standing graphene. The extinction cross section and the decay rates have similar magnitude in both cases.
The only difference that is worth noticing is the redshift in the plasmon energy in the supported graphene, which is
consistent with the scaling of w o< 1/+/€ + 1 predicted by the Drude model.

VII. DISTANCE DEPENDENCE OF THE DECAY RATE NEAR A NANODISK

In the main paper, we have discussed the decay rate for an emitter situated at a fixed point along the axis of
self-standing circular graphene disks. Here we consider the variation of the peak decay rate as a function of position
of the emitter. Figure 8a shows the variation of the rate with distance to the graphene along the axis of the disk.
The rate decays with distance z roughly as exp(—4mz/Asp) (i-e., it follows the same exponential attenuation as in
homogeneous graphene), where the plasmon wavelength Ag, is 290 nm for the m = 1 mode and 94 nm for the m =0
mode. The variation along parallel displacements (Fig. 8b) is less trivial, but it qualitatively follows the near-field
intensities shown in Fig. 4c¢,d of the main paper.

VIII. PLASMONS IN GRAPHENE NANODISKS: SIZE, DOPING, AND RELAXATION DEPENDENCE

Figure 9 summarizes the Er and disk-size dependence of SPs in graphene nanodisks. The evolution of the plasmon
energy is inherited from the w, o \/Ep/\sp scaling in homogeneous graphene, so that it increases with v/Ep (Fig.
9a) and decreases with the inverse of the square root of the radius (Fig. 9b).

The peak decay rate has a weak dependence on both Er and disk size (Fig. 9¢,d), essentially reflecting the increase
in SP lifetime when its energy is positioned close to Fr. Maximum rates ~ 10T are consistently obtained near
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FIG. 9: Plasmons in graphene nanodisks: Size and doping dependence. (a,b) Fermi-energy and disk-radius depen-
dence of the SP energy in doped graphene disks for the first- (solid curves) and second-order (dashed curves) modes with either
m = 0 (green curves) or m = 1 (red curves) azimuthal symmetries. The two lowest-order modes are shown for each symmetry.
(c,d) Decay rate I' of an emitter located 10 nm above the center of the disk, normalized to the rate in free space I'g, and
calculated at the energies of the SPs in (a,b). The emitter is polarized parallel (perpendicular) to the disk in the red (green)
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FIG. 10: Plasmons in graphene nanodisks: Relaxation dependence. Decay rate of an emitter situated 10 nm above
the center of a doped graphene disk for two different disk diameters D and two values of the Fermi energy Er, as shown by
text labels. The emitter is polarized parallel to the disk. Dashed curves are calculated with 7 ~ 0.5 x 1073 s. Solid curves are
obtained with 7 =4 x 107"%s for Er = 0.4eV and 7 = 6 x 107 **s for Ep = 0.6¢eV.

these disks at the distance z = 10 nm chosen in the calculations.

The quality factor of the SP resonances @ (Fig. 9e¢,f, extracted from the peak frequency divided by the FWHM)
shows a strong increase with Er, in agreement with the longer propagation distance observed in homogeneous graphene
at higher doping. Our reported values of @) > 100 are consistent with the moderate relaxation time employed in the
calculations, 7 ~ 107135 (i.e., Q ~ wpT). Actually, the values of @ reported in Fig. 9e,f are qualitatively well predicted
by this formula using the energies of Fig. 9a,b as input. At the same time, much higher values of the mobility p have
been reported|[8], which should lead to larger @Q’s and peak rates in direct proportion to p, at least below the optical
phonon frequency.

The role of plasmons in the relaxation of graphene is not yet well understood, although careful analysis [2] reveals
that their effect can be incorporated through an effective 7 ~ 0.5 x 107!3s. We show in Fig. 10 results for the decay
rate near nanodisks obtained with this effective value of 7 (dashed curves), compared to calculations obtained with
7 = pEp/ev’ and a mobility g = 10,000 cm?/Vs (solid curves, taken from Fig. 4 of the main paper). The shorter
relaxation time due to phonons produces a decrease in both the peak rate and @ by a factor of ~5-9 in the spectra
shown here, which increases linearly with E'r and decreases smoothly with w.

IX. FIELD LINES IN NEAR-FIELD PLOTS

The near-electric-fields shown in the main paper for ribbons and disks are obtained close to a non-degenerate
resonance at w = wp, so that they take the form E®* 4+ F/(wg — w — iy/2), where v is the plasmon relaxation
rate. Since the ribbon width is much smaller than the light wavelength, the near field must be almost electrostatic,
and therefore, E and F are approximately real vectors. Interestingly, the on-resonance induced field i2F /v is almost
imaginary, in good agreement with our numerical simulations. Using a real transition dipole, the induced fields plotted
in the main paper are more than 99% imaginary, and this actually allows us to extract the field lines that are shown
there (i.e., field lines corresponding to a nearly real, electrostatic electric field).

X. POLARIZABILITY OF THE COMBINED SP-EMITTER SYSTEM IN THE JAYNES-CUMMINGS
MODEL

The interaction with the external field E(t) can be written

Hext = _(PP+P0) E(t)7
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which involves the plasmon and emitter dipole operators P, = dya+ dsa™ and Py = doo + djo ™, where d, and dy are
their respective transition dipoles.

We derive the polarizability « from the first-order-perturbation-theory steady-state solution of the model Hamil-
tonian for a faint external field of the form E(t) = 2Re{Epe~*!}. The polarizability is defined through the relation
p(t) = 2Re{a(w)Epe~ ™}, obtained from the expected value of the combined induced dipole, p = (P, + Py). After
some algebra, we find

a(w) = ap(w) + ag(—w),
where

(wo —w —iT0/2)|dp[* + (wp — w — irs/2)|do|* — 2gIm{d,d5}
(wo —w — il /2)(wp — w — ik/2) — g2 '

ap(w) =

In the calculations presented in Fig. 5¢ of the main paper we assume dj to be negligible compared to d,,. Furthermore,
the model parameters wy, I', and ) are extracted from the second m = 1 mode of Fig. 9a,c,e (red dashed curves)
following the procedure described in the main paper.
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